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Abstract. The vibration spectrum of a metastable glassy state contains mainly two types of 
excitations: harmonic (phonons) and anharmonic modes ( A M ) ,  some of which are double- 
well potentials. The AMS are treated in terms of the catastrophe theory. Two possible 
representations of the potential of the Ahis are discussed. The double-well potentials cor- 
respond to only a minor part of the AMS,  while the major part corresponds to soft anharmonic 
vibrations that are experimentally observed as a shift of the density of vibrational states 
towards lower frequencies. 

Strong feedback interaction between the anharmonic and harmonic modes results in the 
appearance of higher-rank AMS,  making a hierarchy in which the higher-rank AMS are 
responsible for stability of the corresponding lower-rank A M .  A simple two-level hierarchy 
simulating the relaxation process of the glassy state is considered. The characteristic acti- 
vation energy for this process decreases with temperature. 

1. Introduction 

The problem of the glassy state may be tackled from several directions, most interesting 
among which would seem to be the two outlined below. 

First, the glassy state may be taken as it is and its properties studied without trying 
to go into the problem of glass formation. It is by now well established that all glasses 
contain a certain amount of the double-well potentials (DWP). This means that there are 
entities (atoms or groups of atoms) that can occupy at least two positions separated by 
a potential barrier. Transitions between these positions play the dominant role in many 
kinetic phenomena observed in glasses (see, e.g., the collection of reviews edited by 
Phillips (1981)). 

The DWPS are believed to give rise to structural defects (sD), proposed by Anderson 
and Bommel(1955) in order to describe kinetic phenomena in glasses at relatively high 
temperatures (above 10-20 K). At low temperatures (below 10 K) these phenomena 
are connected with the two-level systems (TLS) proposed by Phillips (1972) and Anderson 
et a1 (1972). The transitions in the SDS occur because of the thermal activation, while in 
the TLSS the most important role is played by tunnelling. (That is why they are often 
also called tunnelling modes.) A more elaborate theory of the tunnelling processes at 
relatively high temperatures (above 10-20 K) is presented in the Fleurov and Trakh- 
tenberg (1986). 
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An intriguing question is the physical nature of the DWPS. Several models are now 
proposed (see, e.g., Phillips 1981, Cohen and Grest 1980). A simple model for the 
stretched Si-0-Si bond was considered in several papers (Vukcevich 1972, Fowler and 
Edwards 1980, Fleurov eta1 1985). A more complicated approach is presented by Chen 
et a1 (1987). 

The Si-0-Si model may be considered as a useful toy-model that allows one to 
investigate various situations and derive important consequences that can hold also in 
more general cases. Karpov et a1 (1982, 1983) (see also a review by Klinger (1983)) 
proposed treating the DWPS in glasses by using a catastrophe-theory approach. (A 
description of basic catastrophe theory can be found in Gilmore’s book (1981).) The 
idea that the DWPS (or more generally, anharmonic modes) are catastrophes of the 
potential energy of the solid created a new understanding of low-frequency excitations 
in glasses. This approach will be used below, although in a somewhat modified form. 

The second direction from which to approach the theory of glasses that we would 
like to distinguish is to endeavour to understand the glassification process and the 
problem of the stability of glasses. From the ‘liquid side’ of the glass transition this 
problem is addressed by Leutheusser (1984) (another version is proposed by Jacobs 
(1987)). It is shown that a non-linear interaction between the density fluctuations of the 
liquid can result in an arrest of the diffusion and, hence, glassification. A percolation 
approach to the same problem is developed by Cohen and Grest (1979). As for the 
structure of the phase space of the glass, an interesting paper by Jackle (1981) should be 
mentioned. He  considers a system in which the ergodic hypothesis is broken down and 
calculates the residual entropy of the glass. 

A gap between these two directions may be seen. However, there are reasons to 
believe that one can find a link between the low-temperature properties of glasses and 
the glassification process that proceeds at rather high temperatures. The DWPS are 
understood to be a consequence of the degeneracy of the metastable glassy state created 
at the melting temperature (see, e.g. ,  the discussions of Cohen and Grest (1980), Fleurov 
and Trakhtenberg (1986)). There are also some experimental indications for such a link. 
According to an interesting experimental finding of Reynolds (1979,1980), Raychadhuri 
and Pohl (1981), and Reichert et a1 (1986), the density of the TLSS measured at low 
temperatures is a function of the glassification temperature Tg.  

The problem of the appearance of the DWPS and their possible role in the stability of 
glasses will be addressed. The DWPS will be treated by means of the catastrophe theory 
(introduced in glasses by Karpov et a1 (1982, 1983)), which allows one to separate the 
coordinate of a local anharmonic degree of freedom, leaving other degrees of freedom 
harmonic, However, some of these harmonic degrees of freedom may be strongly 
coupled with the DWPS. A feedback mechanism caused by this coupling may result in a 
conversion of one (or several) harmonic modes into anharmonic ones. 

This is how one arrives at a hypothesis of a hierarchy of anharmonic modes in which 
the anharmonic modes of the nth rank are induced by the anharmonic modes of the 
(n  - 1)th rank. On the other hand the anharmonic modes appear to be responsible for 
the stability of the nth rank anharmonic modes. Therefore, the anharmonic modes 
(DWPS, in particular) turn out to be not only an inherent property of the glass but also to 
provide amechanism for ensuring the metastability of the glass. An example of a simple 
hierarchy containing only two ranks will be considered in more detail. 

2. Harmonic and anharmonic modes in glasses 

In this section the vibration spectrum of a disordered solid is considered. Contrary to 
that which pertains to a crystal, whose spectrum can be represented as a set of harmonic 
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vibrations (phonons), the spectrum of a disordered solid is distorted and contains a lot 
of anharmonic modes (.m)-in particular, DWPS. The consideration to be presented in 
the next two sections is based mainly on the results of Karpov eta1 (1982,1983). However, 
some important differences will be emphasised. 

In order to find the spectrum of the vibrations in the disordered solid at zero 
temperature ( T  = 0) one has first to calculate its total energy U({RP}). It is the sum of 
all the interactions between the atoms constituting the solid. {RP} is the set of the 
coordinates of these atoms. It represents the configuration space R of the system; i is the 
number of the atom and a represents the Cartesian coordinate. 

The equilibrium positions of atoms are determined by the equation 

d U({RF})/dRf = 0. (1) 

There is at least one point in the configuration space R where the equations (1) are 
satisfied and the energy U({RP}) achieves its absolute minimum. It corresponds to a 
certain crystalline structure. However, the existence of metastable glassy states implies 
that there are additional solutions corresponding to local minima of the energy. 

The vibration spectrum of the system in the vicinity of the absolute minimum is 
determined by the eigenvalues of the force matrix 

Det(aZU/dRpdRf3 - M , u 2 6 , d W p )  = 0 (2) 
where M I  is the mass of the ith atom. All the solutions of equation (2) are certainly 
positive (u2 > 0). The same holds for any local minimum. The number of solutions is 
3N, where N is the number of the atoms in the sample. 

Two neighbouring minima are now considered. They are connected by a trajectory 
in the configuration space R that passes at least once a saddle point of the energy 
U({RP}) Equation (1) also holds at this saddle point, while equation (2) at this point has 
at least one negative eigenvalue. 

The value of the total energy at this saddle point as compared to the energy at the 
minima determines the height of the potential barrier separating these two minima. The 
system passes with a certain probability from one minimum to another along this 
trajectory over the saddle point (thermal activation) or under it (tunnelling). This sort 
of motion corresponds, respectively, to either classical or quantum-mechanical motion 
of a small group of atoms. 

Now one may consider the motion along this trajectory as a specific degree of freedom 
and arrive at the idea of the double-well potentials that can give rise either to TLSS or to 
SDS (see the discussions in Fleurov and Trakhtenberg (1986), Goldanskii et a1 (1989)). 
Since this trajectory is a single-parameter curve, one can transform the set of coordinates 
{RP} diffeomorphically so as to distinguish the coordinatex] corresponding to the motion 
along the trajectory 

{RP} * x1, {Rj')}. (3) 
The number of degrees of freedom in the set {Rj')} is 3N - 1. 

The energy of the system is a function U ( x l .  {Rj'l}) of the transformed coordinates 
(3) and properties of these functions are studied. The splitting lemma and Thome's 
theorem of the catastrophe theory (see, e.g. ,  Gilmore (1981)) enable one to represent 
this function in the form 

U ( x l  , {RI')}) = U(O)({Rj')}) + Alf(xl)  
f ' ( X 1 )  = i x ;  + 4 t ( 3 ) 4  + p x :  + t ( ' ) x l  

(4) 

( 5 )  
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where the parameters, &'I, &*I, and b3) depend on the coordinates {I?!')}. The parameter 
A ,  is an energy of the atomic order, while the other parameters are dimensionless. The 
set {Rf')}makes the control-variable space for the At3 type catastrophe characterised 
by the state variable xl. The latter is supposed to be dimensionless and measured in the 
interatomicspacings, a ,  i.e. , x l  = ( R I  - R('))/a. Rio) is a reference point. Generally one 
has to distinguish many anharmonic coordinates of the type xl. However, it is assumed 
that these do not interact with each other. Therefore one can deal with only one 
anharmonic coordinate in the representations (4) , ( 5 ) .  

This holds best of all in the vicinity of a non-Morse critical point where all three 
derivatives offl(xl) over x1 vanish: 

&3)({Rj1)}) = t'2'({R/?)}) = &l!({Rjl)}) = 0. (6) 
Equations (6) hold in a subspace R:') of the control variable space E@'), which will be 
denoted as being below critical region. 

Now there are two problems to be discussed. First, one may just assume without any 
additional explanation that the system is stabilised close to the critical region Ril) and 
consider the properties of the anharmonic modefl(xl). Therefore, one assumes that the 
function U('!({R(')}) has (quite by chance) a local minimum near the critical region, i.e. 

for {I?)')} close to R;'). The harmonic part of the vibration spectrum is determined by 
the equation 

where hi, is the reduced mass corresponding to the motion along the coordinate R!'). 
The number of the coordinates in equation (8) is 3N - 1, compared with equation (2), 
which contains 3N coordinates. This first problem will be discussed in the § 3 of the 
present paper. 

Secondly, one may ask the question whether there are any physical reasons for the 
system to have a local minimum just near the critical region Wi')? We shall see below in 
0 5 that these reasons may come from a strong interaction of the A M ~ ~ ( x ~ )  with one (or 
several) harmonic mode(s) (8). Then the equation determining the local minimum 
becomes more complicated than (7). 

a U(') /a Rj" = 0 

Det(a*U(')/dR,!dRf - h i , w Z 6 , )  = 0 

( 7 )  

' (8) 

3. Anharmonic modes 

Properties of the AM fl(xl)  are considered assuming that the system is localised in the 
control-variable space R(') in the vicinity of the critical region @'I. One may transform 
the function (5) by shifting the reference point, 

X I  + X I  - b. (9) 
The constant b may be chosen in such a way as to eliminate one of the three lower order 
terms in (5). For example, the cubic term is eliminated if 

b = h t ( 3 ) .  (10) 

(11) 

The linear term can be also eliminated if b satisfies the equation 
b3 - p b 2  + t(2)b - &I! = 0. 

The elimination of the quadratic term, which can be carried out in a similar way, will 
not be considered here. 
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The transformation (10) generates the unambiguous canonical form of the At3 type 
catastrophe 

fl(X1) = +xf + tqlx: + tlx, (12) 
to be used below, where 

- 2 (313 + p t ( 3 )  - l ( l ) .  1 - 2 7 t  
= p) - I (312 

6 t  

On the other hand, the transformation (11) is not necessarily unambiguous. If 
equation (11) has three real solutions then the catastrophe term 

fl(X1) = ix; + gt,x: + afj,x: (13) 
may have three possible sets of real coefficients f, and f j l .  It is quite clear that these three 
sets correspond to three different mathematical descriptions of the same physical object. 
Really, choosingfl(xl) in the form (13), the first derivative dfl/dxl is always zero at 
x1 = 0. Three real solutions of equation (11) imply that the functionfl(xl) describes a 
double-well curve. Such a curve has three points (one maximum and two minima) where 
the condition dfl/dxl = 0 holds. Three sets of the parameters f l  and f j l  correspond to 
three possible choices of the reference point: f j  < 0 corresponds to the maximum and 
Q l  > 0 corresponds to one of the minima. 

Karpov et af (1982, 1983) (see also Klinger, 1983,1985,1987) considered two types 
of symmetric DWP. The type I DWP with f j l  < 0 and P1 = 0 corresponded to the reference 
point in the maximum of the function fl(xl), while the type I1 DWP with f j l  > 0 and 
€2 - 4 -  - $11 corresponded to the reference point in one of the minima. The shift 

x1 * X I  ? 

transforms the type I into the type I1 DWP. The above discussion proves that these two 
types of DWP are merely different mathematical representations of the same physical 
entity and hence they are identical. 

The function fl(xl) of the form (12) is studied. It describes either a DWP or an 
anharmonic single-well potential (SWP). The extrema of the function fl(xl) are deter- 
mined by the equation 

df l /dxl  = x: + q l x l  + t ,  = 0. (14) 

The Cartan formula (see, e.g., Korn and Korn (1968)) is applied to analyse this equation. 
The number of real solutions of the equation (14) is determined by the sign of the 
quantity 

Q i  = (q1/3I3 + (ti/2I2. (15) 

There are three real solutions if Q, < 0 and only one solution if Q, 3 0. The equation 

determines the separatrix in the (ql ,  t l )  plane separating the SWP and the DWP regions 
(see figure 1). 

The quantity Q ,  can be negative only if the parameter q l  is negative and there is 
only one type of the DWP, as emphasised above. Another distinction between the 
representation (12) and (13) is that equation (13) always produces a DWP for any value 
of the asymmetry parameter t,, provided only that fjl < 0 and even for positive values 
of f j l  if Q l  < at:. A situation we believe to be more reasonable arises when using the 
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S d P  SWP 

Asymmetry parameter and SWP regions 

potential (12). Then, increasing the asymmetry parameter t ,  (for rjl < O), a symmetric 
(at t l  = 0) DWP first becomes asymmetric and then, after crossing the separatrix Q ,  = 0 
(see figure l), converts into an SWP. At  positive values of q ,  the DWPS do not exist at all. 

In the DWP region the three solutions of equation (14) are 

x I  = 2-  COS(^/^) (17) 
~ 1 1 , 1 1 1  = --2d(-171/3) cos(a/3 n/3) 

where 

& = cos- '[-(t1/2)(-3/~l)3~2].  

In the symmetric case, when t ,  = 0, one has a = n/2 and xIII = 0, xI = xII = d(--q,). 
Therefore, the maximum of the functionfl(xl) is at the point xIII, while two minima are 
at the points xI and xII. 

When the absolute value 1 t ,  1 of the asymmetry parameter increases, two of the three 
solutions tend to fuse at the separatrix Q ,  = 0 (figure 1) and then become complex. If 
t l  < 0, then these are xI1 and xIII, if t ,  > 0 then these are xI and xIII. The DWP converts 
into an SWP at the separatrix (Q, = 0) and its minimum lies at the point 

X,," = i 2 q q - J q .  (18) 
The sign in the equation (18) is opposite to the sign of the asymmetry parameter tl.  

is 
The second derivative of the potential represented by the functionfl(xl) (at Q ,  = 0) 

d2f,/dx:/.*=Xm," = -3171. (19) 

U: = - 3 A l q 1 / M a 2  = -krjlu$. (20) 

Thus the frequency of the vibrations of a mass M in such a potential can be estimated as 

Here we use for the estimates 
A l  = h2/ma2 ~ u D  = A 1 ( m / M ) " '  

m is the electron mass, wD is of the order of the Debye frequency. Therefore, at 
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the separatrix the asymmetry converts the DWP into an SWP with an anomalously low 
characteristic frequency (for small values of 1 q 1 ) .  If, however, the asymmetry increases 
further on [(t1/2)2 S ( 1  q1 1/3)3] then the second derivative becomes 

d2fl/dx: 31t, / 2 / 3  

and the frequency is 

Therefore, at large asymmetries ( t l  = 1) the frequency (21) increases and approaches 
the characteristic frequencies of the solid. 

These observations are in agreement with the experimental findings of Buchenau et 
a1 (1984,1986), who measured by neutron scattering a softeningof the vibration spectrum 
in glasses as compared to that of the crystal. It is emphasised that the anharmonic SWPS 
were first discussed by Karpov and Parshin (1984, 1985) (see also Krivoglaz (1985)). 
They pointed out the role played by these in phonon scattering at temperatures around 
10-20K and proposed an interpretation of the well known plateau in the thermal 
conductivityof glasses. However, their analysis uses the representation (13) rather than 
(12), hence, the asymmetric SWPS appear only if V I  > if:, while the representation (12) 
produces SWPS at a much weaker condition, Q,  > 0. 

Equation (12) predicts much higher density of soft SWPS than the equation (13). 
Really, the soft symmetric DwPs-regardless of the representation-are characterised 
by the value q 1  -- 0.1 (Karpov et a f  1982, 1983). However, even a small asymmetry, 
t l  2 0.1, in the representation (12) converts these DWPS into SWPS. Therefore, assuming 
a more-or-less uniform distribution of the values t l  and q one can say that the number 
of the SWPS is at least an order of magnitude higher than that of the DWPS. This estimate 
can be easily obtained from figure 1, since the area of the DWP triangle is less than 0.1 of 
the whole area. 

4. Strong coupling between anharmonic and harmonic modes 

In the above consideration two types of degrees of freedom were distinguished. They 
correspond to the AM described by the potentials of the type A Jl(x) (12) and a set of 
harmonic modes ((7) and (8)). A mode fl(xl) corresponds either to DWP or to an 
anharmonic soft SWP, while all the remaining modes correspond to harmonic vibrations 
(phonons) of the glass. This separation is, however, not complete. It is based on the 
assumption that the anharmonic and harmonic modes do not interact. However, the 
parameters of the potential AJl(xl)  depend on the phonon coordinates {Rj')}. This 
interaction is able to cause changes in the harmonic part of the vibration spectrum 
because of the feedback mechanism to be considered below. 

The complete treatment of the phenomenon assumes a proper account of the quan- 
tum character of the motion in the anharmonic potential A J,(x,). Here we would not, 
however, go beyond the framework of the classical approach, which is much simpler than 
the quantum-mechanical one and nevertheless leads to a quite reasonable qualitative 
understanding. The classical calculation also makes a good basis for the quantum 
calculation to be presented elsewhere. 
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First, the properties of the system described by the potential (4) at zero temperature 
( T  = 0) are studied. The particle in the potential Afl(xl)  is near its minimum (or near 
the lowest of the two minima in the case of a DWP). The total energy of the system is 

where 
u({Rjl)}) = uco)({R,!')}) + ua"h({R,!')}) (22) 

uanh({R,!')}) =Alfl(xl)/xi=x,, , .  (23) 

The vicinity of the critical region R$') is considered. The contribution of the anharmonic 
mode (23) with 1 q ,  1 e 1 can be found for various asymmetries. For example, in the case 
of a symmetric DWP (rl = 0) one has 

At the separatrix, Q, = 0, this contribution becomes 
2 
9 

ua"h({Rj')}) = --Alq:. 

Far from the separatrix, where (r1/2)2 9 ( - ~ ' / 3 ) ~ ,  

(25) 

This contribution (measured in atomic units) appears to be small, unless the asymmetry 
parameter, t l ,  approaches unity. 

We are interested, however, not in the absolute value of this contribution but rather 
in its variation as a function of the harmonic coordinates {Rj')}. The principal role here 
is played by the 'order' parameter q which varies very strongly near the critical region. 
This fact follows, for example, from the model calculation (Fleurov er a1 1985) where it 
is shown that varying the coordinate R (the Si-0-Si distance) in the critical region by a 
value, SR,  which is of the order of the zero-point amplitude, U (U e a )  the barrier height 
of the DWP varies from zero to a value of an atomic order (see also Fleurov and 
Trakhtenberg 1986, Chen et a1 1987). This property of the critical (soft) DWP is also 
connected with the anomalously large value of the deformation potential for the phonon- 
DWP coupling (Karpov et ~11982,1983).  

A coordinate x2  = (R2 - Rio)) is distinguished where Rio) is a reference point. It is 
also assumed for the sake of simplicity that only the coordinate x2  in the control variable 
space R(l) is strongly coupled with the AM, i.e. the inequality 

d Iql l/dx2 -- a/u  >> 1 (27) 
holds for this in the nearest vicinity of the critical region. It is also reasonable to believe 
that the parameter t ,  does not depend strongly on any coordinate from the space R(l), 
i.e. 

(allt1 l>(dh l/q')> = 1 (28) 
for all Rj l ) .  It is also emphasised that the coordinate x 2  does not necessarily coincide 
with one of the coordinates of the set {Rf')}. It is rather extinguished from this set by a 
new diffeomorphic transformation (cf (3)). 

Now the question formulated in 0 2 may be addressed: is the metastability of the 
system near the critical region R$') just a random event or are there some physical 
reasons for it? To answer this question one has to analyse the behaviour of the energy 
(4) (or (22)) near the critical region, carefully taking into account the contribution of 
the anharmonic mode, (24)-(26), to this energy. 
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The first derivative of the potential (22) is 

dU/dx2 = dU(')/dx* + &AlxLln dql ldx2 (29) 

where the derivatives (28) are neglected and xmln is the position of the lowest minimum 
of the functionfl(xl). xil,, takes three values: 

xkin = x2,in = xz,,n =- Itl 12'3 - jq l  (30) 

for the three cases (24)-(26), respectively ( q 2  < 0). 
The factor x;," is positive and usually small since q l  and t l  are generally small. 

However, the derivative dql /dx2  is negative and its absolute value is large (see (27)). 
Therefore, the second term in equation (29) representing the reaction of the soft 
anharmonic mode to the local distortion of the matter is negative and of atomic order. 
On the other hand, the first positive term in equation (29) gives the local reaction of the 
environment, which is also of atomic order. It is clear that for the large enough values 
of the derivative (27) one can always find a value R2 close to its critical value ( q l  
(R2c) ,  <l) where two terms in the equation (29) compensate each other and 

au/dx2 = 0. (31) 

It is convenient to choose the reference point Rho) close to the critical point R2c and to 
deal with small values of x2. 

The minimisation of the energy (4) with respect to all the other coordinates from the 
space [W(l) that are not coupled with the AM can be carried out independently, so that 
equation (7) holds for these. Therefore, one can say that a sufficiently strong coupling 
of the AM with at least one variable x2 may lead to an extremum of the total energy of 
the system close to the critical region @),  

In order to understand what type of extremum it is, one has to find the second 
derivative of the energy (22), i.e. the local compressibility of the matter 

d2U/dx: = d2U(')/dx: + $A (dql/dx2)(dx;,,/dx2). (32) 

For above three cases (24)-(26) one has 

dxi,,/dXZ = -dql/dx2 dX;,,/dXZ = - 4  dq,/dxz 

dXi,,/dX2 = - 3  dql/dXZ. (33) 

It follows from the inequality (27) and equations (33) that the soft AM gives a large 
negative contribution to the second derivative of the energy making the latter also 
negative near the critical region 

d2u/dx: < 1. 

Therefore, the extremum is a l-saddle point and the motion along the coordinate x2 
corresponds to the motion along the steepest descent path across the saddle. The 
situation would certainly become more complicated if more than one coordinate were 
strongly coupled with the anharmonic mode. Then a multidimensional consideration 
would be necessary. 

A 'negative local compressibility' means a sort of local instability when the system 
tends to be distorted in such a way as to leave this saddle point in the energy relief. 
Therefore, we have again a double-well potential depending on the coordinate x2. 
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5. Anharmonic modes at finite temperatures 

Now the feedback interaction between anharmonic and harmonic modes is examined at 
finite temperatures assuming, as before, a classical character of the motion. The Gibbs 
free energy, G({Rj}),  is to be considered instead of the energy U({R,}). Near the critical 
region it can be represented in the form 

G({Rjl)}) = G(”)({Rf’)}) - kTln Z (34) 
where 

/3 = l / k T ,  k is the Boltzmann contact; the factor B in the equation (35) for the partition 
function Z stands for the contribution of the kinetic energy of the motion in the potential 
A JI(xl) and for the other degrees of freedom irrelevant to our problem. G(O)({R,f’)}) is 
the part of the free energy which does not depend on the ‘anharmonic’ coordinate xl. It 
is again assumed that there is a coordinate, x2, strongly coupled with the AM, and the 
behaviour of the free energy (35) is studied in the vicinity of the critical point R2c: 

dG/dx2 = dG(”)/dx2 - $Al(d l /dx2)(~?)  (36) 

d2G/dx$ = d2G(”)/dx: - ~ P A I ( d ~ 1 / d x 2 ) * ( ( ~ ~ )  - ( x : ) ~ )  (37) 

and 

where 

Deriving equations (36)-(38), use is made of assumptions (27) and (28). It is also 
emphasised that, applying the functional integral representation for the partition func- 
tion (35), the same equations (36) and (37) can be obtained where the classical averaging 
(38) should be, however, substituted by the quantum averaging. 

The integrals (38) can be calculated at low temperatures using the steepest descent 
technique. For this one has to find the minima, xI andxII, of the functionf(x,) as well as 
its values,fI andfII, and second derivatives, f ;  andfTI, at these points (see 8 3). Then 

(4 = {(f;I)”2(x:+ 1 pAlf;) + ( f Y I ) l 4 4  + l/PAIf:ll exp[-PA1(f,, - f1~I~lc~f;1)”2 

and 
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Figure 2. A scheme illustrating how the 
shape of the primary AM depends on the 
state of the secondary AM. Both modes are 

P r i m a r y  SWP P r i m a r y  o'nlp assumed to be double-well potentials. 

The equations (39) and (40) hold if the anharmonic mode is a DWP: otherwise it has 
only one minimum and 

( x i )  = x f  + 1//3Af;' 

BA I f ; . t I  e 1. 

a3G/dx: = a3G(O)/ax? + @'*A;(dql /d~2)~ [(x:) - ~ ( X ; ' ) ( X ? )  + 2(~:) ' ] .  

( x ; )  - (x!) '  = 4xf//3A,f; + 2 / ( / 3 A l f ; ) 2 .  (41)  

Equations (41)  also result from the equations (39) and (40) for a DWP in the limit 

The third derivative of the free energy G can be also calculated: 

(42) 

The cumulant ( x f )  - 3(x;)(x: + 2 ( ~ : ) ~ i s  zero in approximation (41) .  However, it gives 
a contribution to the asymmetry of the AM at finite temperatures. 

6. Two-rank hierarchy 

The above consideration leads us to the following conclusions. In order to create a soft 
AM with the coordinate x 1  (state variable) the system is to be distorted along another 
coordinate x2  (control variable) until the critical value of the latter is achieved. A 
sufficiently strong feedback interaction between these two degrees of freedom may 
result in a saddle point in the potential relief for the motion along the coordinate x 2 .  
This saddle point corresponds in fact to the potential barrier separating the subcritical 
(q1(x2)  > 0) and supercritical ( q l ( x z )  < 0) regions. A DWP exists only in the supercritical 
region. If only two coupled modes are considered, then the system in the subcritical 
region is free to relax back to the crystalline state. 

A system of two coupled AMS arranged in a hierarchical order is discussed below. 
The one with the coordinate x 1  is called the primary AM while the one with the coordinate 
x 2  is the secondary AM. The latter can be also described as an A+3 catastrophe whose 
potential is represented in the form 

U({Rjl)})  = U(' ) ( {R j2 ) } )  + A ~ ( $ x :  + hr/Zx: + f 2 ~ 2 )  (43) 

where q 2  and t2 depend on the variables {Rj2)} transversal to R 1  and R 2 .  
The motion in the secondary AM is associated with a larger mass and is slower than 

in the primary AM. On changing the coordinate x 2 ,  the potential of the primary AM is 
changed (see figure 2). The transition from the right-hand well to the left-hand well in 
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the secondary DWP is accompanied by a conversion of the primary DWP into a normal 
single-well potential, which leads to a disappearance of the glassy feature. It is also clear 
that the barrier in the secondary DWP ensures its metastability. Studying the transitions 
in the secondary DWP one can obtain information about the relaxation of the glassy 
features. 

The ‘order’ parameter, q 2 ,  for the second rank DWP is determined by the ‘local 
compressibility coefficient’, k ,  of the medium. It is given by the equation (37) and 
contains two terms. The first term 

represents the reaction of the environment. Its temperature dependence will be 
neglected below. The second, negative, term corresponds to the reaction of the first- 
rank AM. At  T = 0 it is 

kDWP(o) = -A l(x?/f;’)(dq1/dX2)2. (44) 

The seond rank DWP appears if 

Then the potential barrier for the motion along the coordinate x2 (the asymmetry being 
neglected, t2 = 0) is estimated as 

Vb = i A 2 q ; ( T ) .  (46) 

The absolute value I q2( T)  I decreases with the increasing temperature and may become 
zero at a temperature To determined by the equation 

q2(To) = ko + kDWP(T0) = 0. 

K ( T )  = 2kDWP(T)/[dql/dx*12 = iPAI((X3 - (x:)2) 

(47) 

Figures 3-5 show the temperature dependence of the value 

which determines the temperature dependence of the AM contribution to the local 
compressibility of the matter. This quantity is calculated numerically for various values 
of the order parameter q1 and the asymmetry parameter tl using equation (38). 

Figure 3 shows that the largest contribution comes from nearly symmetric (tl = 0) 
DWP at low temperatures. The asymmetric AMS make an essentially weaker contribution, 
and for both of them the value of K ( T )  decreases with temperature. The contribution 
of the AMS with the positive value of the order parameter, q l  = 0.1, is depicted in figure 
4. The value of K( T )  for the symmetric AM is negligible at low temperatures and increases 
with temperature remaining, however, small. The asymmetric AMS both for positive and 
negative order parameters, q l ,  behave more or less similarly. Figure 5 shows the 
temperature dependence of the value K( T )  for a larger negative value of the order 
parameter, q l  = -0.3. Here one cannot find essential changes compared with figure 3. 

The strongest effect, i.e. the largest negative value of the DWP compressibility 
kDWP(T), is observed at low temperatures for nearly symmetric DWPS (q l  < 0, Q ,  < 0, 
see figure 3). Therefore, these contribute mainly to the creation of the secondary AM. 

The barrier in the second-rank DWP decreases with temperature and may even 
disappear above a certain temperature To (q2(  T > T o )  > 0). Then our model system is 
free to relax to the crystalline state, i.e. the hierarchy containing only two levels is 
absolutely unstable at T > To.  This process simulates, in a rather simplified manner, the 
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Figure 3. Temperature dependence of the function K ( T )  determining the contribution of 
the AM with q1 = -1 and several values of the asymmetry parameter, t i ,  to the local 
compressibility as a function of the inverse temperature in the units p A ,. 0, t = 0 ;  +, t = 
O.l;O,t = 0.3; n,t = 0.5; X , t  = 0.7. 

real crystallisation of the glass. At temperatures, T < T o ,  the 'crystallisation' occurs 
because of the thermal activation over the barrier (46) and the characteristic relaxation 
time of the process is 

l/T = ( l / t ( O ) )  eXp{ - T/b  ( T ) / K T }  (48) 
where the activation energy v b (  T )  depends on the temperature and becomes zero at 
T = Tot .  The relaxation rate in such a system deviates from the standard Arrhenius law. 
This deviation becomes especially strong at high temperatures when Vb( T )  essentially 
decrease. 

7. Discussion 

The model of a two-rank hierarchy discussed above is far from being a realistic model 
for the glass-crystal transition. Nevertheless it reflects some essential properties of the 
process. In order to make the model more realistic one has to consider a hierarchy 
containing a large number of levels. The mechanism considered above presents, in 

t It must be emphasised that this temperature (if any) should not be considered as a direct analogue of the 
glassification temperature. The two-rank hierarchy is too primitive to describe a rea1 glassification process and 
a multirank hierarchy is necessary. (See the next section.) 
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Figure 4. Temperature dependence of the function K( T )  determining the contribution 
of the AM with 7 ,  = 1 and several values of the asymmetry parameter, t , ,  to the local 
compressibility as a function of the inverse temperature in the units /3 A , .  0, t = 0; +, t = 
O.l;O,t = 0.3; A , t  = 0.5; X ,  t =  0.7. 

principle, such a possibility. Really, the potential (43) for the secondary AM may be 
treated in the same fashion as was the potential (12) for the primary AM. Then, if the 
second-rank AM interacts strongly with a harmonic mode, this harmonic mode would be 
converted into a third rank AM by the feedback mecahnism described above. 

The feedback mechanism leads to a hierarchy of the AMS which have two important 
features. First, each nth rank AM induces an appearance of an (n  + 1)th-rank AM. That 
is how the hierarchy is constructed. Second, each (n  + 1)th-rank AM creates a well (or 
wells) for the (n  + 1)th-rank control variable near the corresponding critical value. This 
ensures a metastability of the nth-rank AM. 

It is now clearly realised that the hierarchy may provide a means of understanding 
the glass-liquid or glass-crystal transitions. Palmer et a1 (1984) demonstrated what 
possibilities are presented by the idea of a hierarchy of relaxations in glasses. In par- 
ticular, they showed how such well known empirical laws as the Kohlrausch and Vogel- 
Fulcher laws follow from it. Pietronero (1986) considered a hierarchy of DWPS in which 
higher-rank DWPS controlled the relaxations of the corresponding lower-rank DWPS. 
Reichert and Schilling (1985) considered an exactly solvable one-dimensional model in 
which a hierarchy of the DWPS involving an increasing (with rank) number of atoms 
appeared. Our hypothesis of a hierarchy in which the same mechanism is responsible 
for both its appearance and its metastability seems to be very appealing and we hope to 
develop it further in future publications. 
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Figure 5 .  Temperature dependence of the function K( T )  determining the contribution of 
the AM with 17, = -0.3 and several values of the asymmetry parameter, t , ,  to the local 
compressibility as a function of the inverse temperature in the units f i  A ,. U, t = 0; +, t = 
0.1; 0, t = 0.3; A ,  t = 0.5; x ,  t =  0.7. 

In its present form (see above) the model seems to be more applicable to the 
interpretation of the experimental findings of Kolesnikov et al (1988). Their AI-Ge 
samples are put under pressure and then rapidly cooled down to the liquid nitrogen 
temperature. The pressure induces an appearance of asoft AM that is revealed by neutron 
scattering. At low temperatures these glassy features become metastable. However, at 
room temperature they relax out within a day. 

One may assume that the pressure induces local distortions which lead to an appear- 
ance of primary AMS. They are observed by neutron scattering to be soft modes. The 
feedback mechanism as described above results in the appearance of secondary AMS that 
are responsible for the low-temperature metastability of the primary AMS. The relaxation 
of these glassy features at room temperature is also qualitatively understood within this 
model. A quantitative treatment of this phenomenon has not yet been carried out. It is 
connected, in particular, with a lack of detailed experimental data on the time and 
temperature dependence of the kinetics of the process. However we believe that experi- 
ments will be done in the near future which will throw more light onto this interesting 
phenomenon. 
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